

Progetto ricerca di base - BLOCKCHAIN4FOODCHAIN

13.10.2015	TT]	Gazzetta ufficiale dell'Unione europea	L 266/9		
		REGOLAMENTO DELEGATO (UE) 2015/1830 DELLA COMMISSIONE			
dell'8 luglio 2015					
che modifica il regolamento (CEE) n. 2568/91 relativo alle caratteristiche degli oli d'oliva e degli oli di sansa d'oliva nonché ai metodi ad essi attinenti					

Legal limits for oils deriving from processing of *Olea europea* fruits

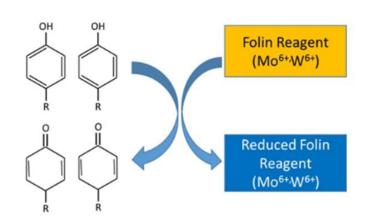
ALLEGATO						L 266/10							
					«ALLEGATO I								
CARATTERISTICHE DEGLI OLI DI OLIVA													
Categoria	Etil esteri degli acidi grassi (EEAG) (*)	Acidità (%) (*)	Numero dei perossidi mEq O ₂ /kg (*)	Cere mg/kg (**)	2 gliceril monopalmitato (%)	Stigmasta- dieni mg/kg (¹)	Differenza: ECN42 (HPLC) e ECN42 (calcolo teorico)	K ₂₃₂ (*)	K ₂₆₈ o K ₂₇₀ (*)	Delta-K (*)	Valutazione organolettica Mediana del difetto (Md) (*)	Valutazione organolettica Mediana del fruttato (Mf) (*)	
 Olio extra vergine di oliva 	EEAG ≤ 40 mg/kg (campagna 2013-2014) (²)	≤ 0 ,8	≤ 20	C42 + C44 + C46 ≤ 150	≤ 0,9 se % acido pal- mitico totale ≤ 14 %	≤ 0,05	≤ 0,2	≤ 2,50	≤ 0,22	≤ 0,01	Md = 0	Mf > 0	
	EEAG ≤ 35 mg/kg (campagna 2014-2016)				≤ 1,0 se % acido pal- mitico totale > 14 %								Gazzetta
	EEAG ≤ 30 mg/kg (campagne succes- sive al 2016)												ufficiale dell'I

DETERMINATION OF ACIDITY AND PEROXIDE VALUES OF EVOO SAMPLE -REG. (UE) 2015/1830-

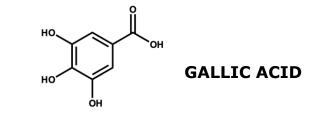
The **Acidity Value** (AV) determination = official measure of the **hydrolytic phenomena** of triacylglicerols of EVOO. (legal limit = 0.8% espressed in oleic acid for EVOO).

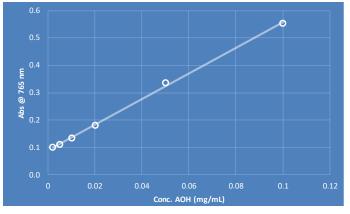
The **Peroxide Value** (PV) determination = official method of the **primary oxidation** of triacylglicerols of EVOO (legal limit = 20 meq O_2/kg oil).

EVOO sample: Delivered on 09-02-2023 (TO)



EVOO Sample – Rocca di Casalina	Peroxide value (meq O ₂ /Kg) mean value ± SD	Olive oil acidity (% oleic acid) mean value ± SD	
то	5.9 ± 0.12	0.48 ± 0.01	


TPC (Folin-Ciocalteu spectrophotometric assay)

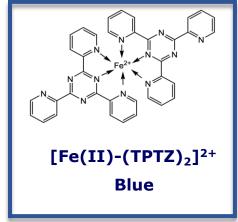

The total phenol content (TPC) of EVOO was determined with the **FOLIN-CIOCALTEU REAGENT**, a mixture of phosphomolibdic acid $(H_3PMo_{12}O_{40})$ and phosphotungstic acid $(H_3PW_{12}O_{40})$. Phenols reduce the **Folin-Ciocalteu reagent** forming a **blue mixture of oxides (Mo₈O₂₃ e W₈O₂₃)**

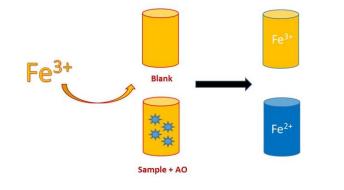
- ✓ The TPC values are determined from a calibration curve prepared with GALLIC ACID standard solutions, and the results expressed as mgGAE/kg oil.
- ✓ The HIGHER the absorbance at λ=765 nm, the HIGHER the TPC of the investigated extract

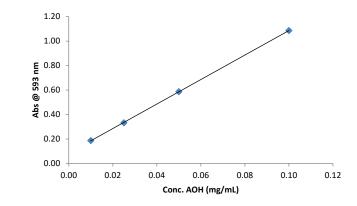
calibration curve built up by using GA solutions

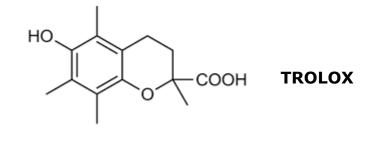
Determination of Antioxidant Activity

The determinations of antioxidant properties of EVOO were carried out applying three different *in vitro* complementary spectrophotometric assays:

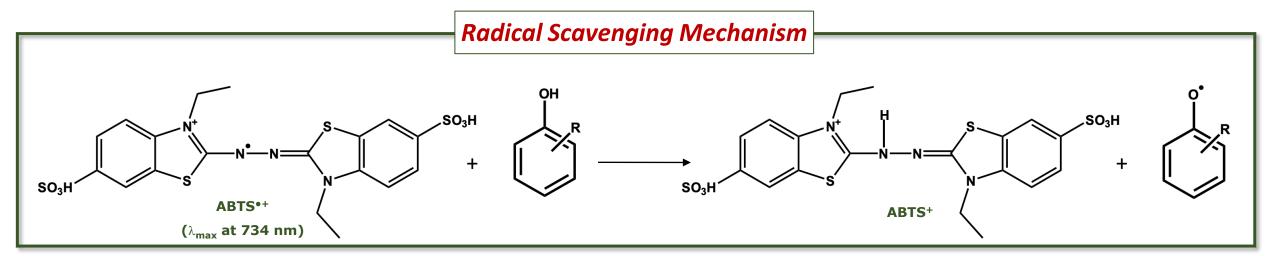

- **1. FRAP spectrophotometric assay**
- 2. ABTS spectrophotometric assay
- 3. DPPH spectrophotometric assay




1. FRAP spectrophotometric assay (Ferric Reducing Antioxidant Power)


FERRIC REDUCING ANTIOXIDANT POWER (FRAP) method is based on the capacity of phenols to reduce the Fe(III) 2,4,6-tris-(2-pyridyl)-s-triazine [Fe(III)-(TPTZ)₂]³⁺ complex to Fe(II) 2,4,6-tris-(2-pyridyl)-s-triazine [Fe(II)-(TPTZ)₂]²⁺ complex.

- ✓ The values are determined from a calibration curve prepared with
 TROLOX standard solutions (results expressed as mgTE/kg oil)
- \checkmark The HIGHER the absorbance at λ =593 nm, the HIGHER the total antioxidant capacity of the investigated extract (from yellow to blue)



2. ABTS spectrophotometric assay

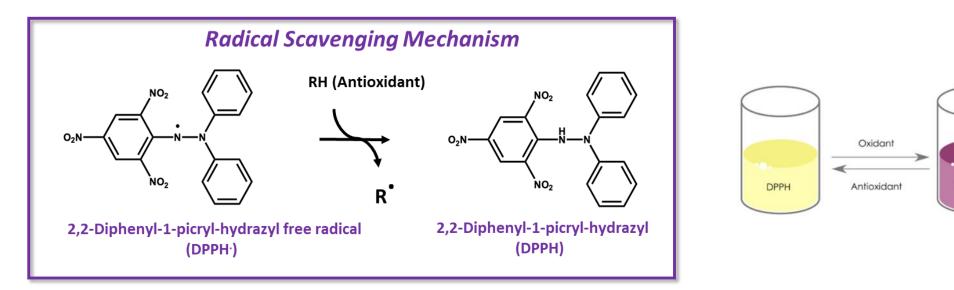
TROLOX EQUIVALENT ANTIOXIDANT CAPACITY (TEAC/ABTS) assay is based

on the ability of phenols to act as ABTS free radical-scavenger.

The ABTS radical (ABTS⁺⁺) is generated in aqueous phase by reacting a strong oxidizing agent (e.g., potassium persulfate, K₂S₂O₈) with the **ABTS⁺ (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)**. Total antioxidant capacity values are determined from a calibration curve prepared with TROLOX standard solutions, and the results expressed as mgTE/kg oil.

The LOWER the absorbance at λ =734 nm,

the HIGHER the total antioxidant capacity of the investigated extract


3. DPPH spectrophotometric assay

2,2-DIPHENYL-1-PICRYL-HYDRAZYL (DPPH) free radical assay is based on the ability of phenols

to act as free radical scavengers or hydrogen donors.

The odd electron in the DPPH· free radical produces a strong absorption maximum at 517 nm (purple colour).

The colour turns **from purple to yellow** as the molar absorptivity of the DPPH· radical at 517 nm reduces as a result of the pairing of the odd electron of DPPH· radical with a H atom from a free radical scavenging antioxidant to produce DPPH-H. Total antioxidant capacity values are determined from a calibration curve prepared with TROLOX standard solutions, and the results expressed as mgTE/kg oil.

The LOWER the absorbance at 517 nm, the HIGHER the total antioxidant capacity of the investigated extract

DPPH +

Determination of TPC and antioxidant activity of EVOO sample

EVOO sample: Delivered on 09-02-2023 (TO)

Then stored in:

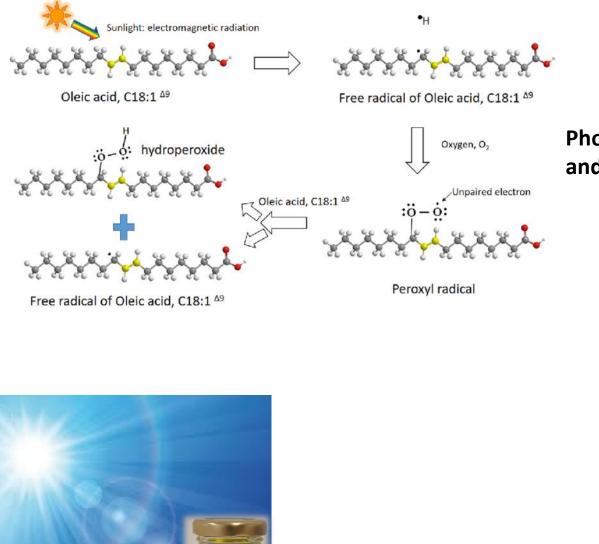
EVOO Sample – Rocca di Casalina	TPC (mg GAE/kg) mean value ± SD	DPPH (mg TE/kg) mean value ± SD	ABTS (mg TE/kg) mean value ± SD	FRAP (mg TE/kg) mean value ± SD
ТО	179.67 ± 7.07	171.10 ± 10.38	302.67 ± 11.80	218.26 ± 1.58

Rocca di Casalina EVOO: mix of *cultivars* (Leccino, Moraiolo, Frantoio)

Comparison with TPC of other EVOO samples

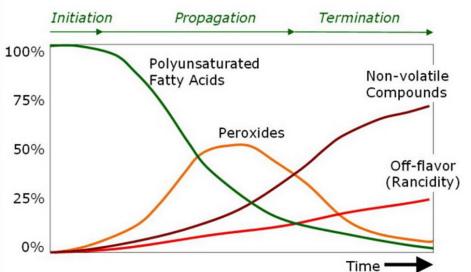
TPC mg GAE/kg	Cultivars	References		
180	Moraiolo, Apulia (Italy)	Baiano et al., 2009		
78-199	Moraiolo	Hanbook Olive oil - Springer		
135	Frantoio, Umbria (Italy)	Ninfali et al., 2001		
97.63-236.41 (Sicily)	Thirty mono- and multivarietal and PDO extra-virgin			
268.63–509.00 (Apulia)	olive oils samples were collected from	Fanali at al. 2019		
171.16–573.20 (Tuscany)	Italian producers located in different areas belonging	Fanali et al., 2018		
161.82-298.23 (Lazio)	to the harvest year 2017.			
138-278	8 EVOOs (monocultivar) from Apulia	Negro et al., 2019		
112-163	Carolea (Calabria, Italy)	Dini et al., 2020		
70-96	Leccino (Calabria, Italy)	Dini et al., 2020		
133-421	4 cultivar EVOO (Sardinia, Italy)	Tuberoso et al., 2016		
158-395	2 Tunisian cultivars	Nakbi et al., 2010		
112-163	Carolea (Calabria)	Dini et al., 2020		
70-96	Leccino (Calabria)	Dini et al., 2020		
133-421	4 cultivar EVOO (Sardegna)	Tuberoso et al., 2016		
180 (T zero) 144 (6 months) 38 (12 months)	Moraiolo, Cerignola (Puglia) (STORAGE)	Baiano et al., 2009		

Rocca di Casalina EVOO: mix of *cultivars* (Leccino, Moraiolo, Frantoio)


Comparison with antioxidant activity of other EVOO samples

FRAP assay mmoITE/kg	Cultivars	References
0.36-2.95	4 cultivar EVOO (Sardegna)	Tuberoso et al., 2016
0.70-2.22	Arbequina EVOO from Spain	Borges et al., 2017
0.38-1.67	Spanish monovarietal EVOO	Ramírez-Anaya et al., 2019

ABTS assay mmolTE/kg	Cultivars	References
0.46-0.76	Carolea from Calabria (Italy)	Dini et al., 2020
0.24-0.36	Leccino from Calabria (Italy)	Dini et al., 2020
0.09-1.88	Four cultivars from Sardinia (Italy)	Tuberoso et al., 2016
0.20-0.73	Arbequina from Spain	Borges et al., 2017
1.17	EVOO (Spain)	Ramírez-Anaya et al., 2019
0.61-2.42	Two Tunisian cultivars	Nakbi et al., 2010


DPPH assay mmolTE/kg	Cultivars	References
0.342-0.556	Carolea from Calabria (Italy)	Dini et al., 2020
0.266-0.388	Leccino from Calabria (Italy)	Dini et al., 2020
0.25-1.17	Four cultivars from Sardinia (Italy)	Tuberoso et al., 2016
0.52-1.58	Arbequina from Spain	Borges et al., 2017

WORK IN PROGRESS ...

Photo-oxidation and autoxidation oleic acid and formation of peroxide

NEXT STEPS ...

Development and application of a RP-HPLC-PDA method to characterize the phenol pool of EVOO sample, followed by confirmation *via* HRMS analysis:

- Optimization of experimental conditions (column selection and gradient program) on a mixture of standard phenolic compounds commonly present in EVOO
- Evaluation of the phenolic profile of EVOO sample at the starting time (TO)
- Comparison of chromatographic profile with photooxidised EVOO samples (T1, T2, T3)
- Quantitative analysis of the hydroxytyrosol as the main quality marker of EVOO
- Quantitative determination of other identified phenolic compounds through the use of proper calibration curves
- Correlation studies between the results of spectrophotometric assays and the HPLC-based determinations

2

Evaluation of TPC and antioxidant properties in plasma samples obtained from patients treated with Rocca di Casalina EVOO (provided by Prof. Vaudo and Dr. Cavallo)